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In this research, Carreau-Casson Fluids flow under the effect of energy 
transfer with internal heat source/sink and radiation over a stretching sheet 
are being analyzed and investigated. Shooting method with the help of 4-
order Runge-Kutta (RK4) integration technique is applied on governing 
equation of fluid flow and heat equation. The effect of dimensionless 
governing parameters on velocity, thermal profiles along with the friction 
factors and local Nusselt numbers is showed graphically and numerically. 
Different physical interesting parameters on the fluid velocity and heat 
equation are described visually and numerically. 
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1. Introduction 

*The fluid flow and heat flux within a sheet film is 
attention for the understanding, analyze and the 
design of different heat exchangers and chemical 
processing equipment. The multi applications of this 
study include wire and fiber coating, aerodynamic 
extrusion of plastic plate, reactor fluidization, 
polymer plate and food processing, and cooling of 
transpiration. Crane (1970) was the first author 
believed to examine the fluid flow on a stretching 
sheet in view of an application to the process of 
polymer extrusion from a slit. Later, more authors 
Gupta and Gupta (1977), Carragher and Crane 
(1982) and Howell et al. (1997) investigated various 
aspects of same problems, such as the heat transfer, 
mass and momentum equation of a semi-infinite 
fluid layer driven by a continuous stretching plate. 

The non-uniform heat source/sink influence on 
the fluid flow and thermal boundary layer from an 
unsteady stretching plate through a quiescent fluid 
medium extending to infinity is investigated. The 
velocity profile and heat field are solved numerically 

using the Chebyshev finite difference method (Tsai 

et al., 2008). Abel et al. (2009) studied a 
mathematical model of MHD flow and heat exchange 
to a horizontal laminar plate, the flow of a thin liquid 
film and subsequent heat exchange from the 
stretching surface is investigated with the aid of 
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similarity transformation, the transformation 
enables to transform the unsteady boundary layer 
equations to a system of non-linear ordinary 
differential equations. Nandeppanavar et al. (2012) 
analyzed the effects of viscous dissipation; non-
uniform heat source/sink, magnetic field, and 
thermal radiation on temperature characteristics 
over an unsteady stretching sheet of a thin liquid 
film are discussed. 

Baag et al. (2016) studied MHD flow analysis on a 
stretching sheet in a porous medium using DTM-
Pade’ and Numerical Methods (shooting method), 
the influences of various interesting parameters like 
as magnetic parameter, permeability parameter, and 
the power index is discussed. Yousif et al. (2016) 
investigated numerical simulation for a thin liquid 
sheet over unsteady stretching shoot by using 
homotopy perturbation technique which found that 
when increasing both of the Darcy number and the 
unsteadiness parameter will decrease the thickness 
of the thin liquid film. Magneto hydrodynamic 
Casson fluid with heat transfer in stretching sheet is 
investigated by using shooting method with help of 
RK-4 and analyzed physical interesting parameter 
Ali et al. (2017). 

Several authors Vajravelu and Roper (1999), 
Vajravelu (2001), Liu (2004) and Sajid and Hayat 
(2008) examined the layer boundary with heat 
exchange problem with a linear, power-law or 
exponentially surface velocity in a stretching plate 
and a uniform or various surface heat condition. In 
this paper, the main objective is to undertake the 
study of the Carreau-Casson fluid flow and energy 
transfer over an unsteady stretching surface with the 
study, the effect of viscous dissipation, thermal 
radiation and non-uniform heat source/sink under 
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the effect of a magnetic field. In order to solve 
governing equation, we use shooting method with 
help of 4-order Runge-Kutta (RK4) integration 
scheme to find the approximate solution of nonlinear 
ordinary differential equations that covers the MHD 
boundary layer Carreau-Casson flow and a thermal 
boundary layer of Carreau-Casson fluid in the 
presence of a magnetic parameter.  

2. Mathematical model 

Assume two-dimensional continuity equation, 
momentum equation, and energy equation that 
cover incompressible viscous MHD fluid with 
electrically conducting. The transitive applied 
magnetic field 𝐵0 is normal to the stretching sheet 
are formulated. The Navier-Stocks equation with 
heat equation that governing the problem are (Eqs. 
1-3) 

 
ux + vy = 0,                                                                           (1) 

uux + vuy  = υ (1+
1

β
) uyy + υ

(3n−3)

2
Γ2uyyuy

2 − σ
B2(x)

ρ
u −

υ

K
u,                                                                                            (2) 

uTx + vTy =
K

ρ cp
Tyy +

μ

ρ cp
uy

2 − 
1

ρ cp
 (qr ) y +

q′′′

ρ cp
           (3) 

 
Here 𝑢 and 𝑣 represents the velocity components 

along 𝑥 and y directions, respectively. 𝑣, 𝜌 and 𝜎 are 
the kinematic viscosity, density and electrical 
conductivity of the fluid; Casson fluid by 𝛽 and time 
constant by Γ. Also, T, 𝐾 and 𝑐𝑝 are the temperature, 

thermal diffusivity and specific heat, respectively. 
Where the external electric field is ignored and 
transverse magnetic 𝐵(𝑥) of uniform strength is 
defined as: 

 

B(x) = B0x
n−

1
2 

 
𝑞𝑟 and 𝑞′′′ is the radiative heat flux and non-uniform 
heat source/sink of the fluid, defined as: 
 

qr = −
4σ∗

3k∗
(4TT∞

3 − 3T∞
4) 

q′′′ =
uw α

2L  υ 
(A∗(Tw − T∞)f ′ + B∗(T − T∞)) 

 

where σ∗ and k∗ are the Stefan-Boltzmann constant 
and the mean absorption coefficient respectively. 

The associative boundary conditions that cover 
Eqs. 1-3, could be written as (Eqs. 4 and 5): 

 
u(x, y) = ax, v(x, y) = 0, T = Tw(x)   at  y = 0                 (4) 
u = 0,     T = T∞  as  y →  ∞                                                   (5) 
 

where Tw = T∞ +
cξ

−
3
2 

x2

2v
, and 𝑇0 is a heating or 

cooling temperatures. For solving this problem, the 
continuity equation, momentum equation and 
energy equation, by below transformation with the 
help of stream function 𝜓 which are defined 
 

ψ = √aυ xf(η);    η = √
a

υ
 y;  

g =
T−T∞

Tw−T∞
  , T = T∞ − Trefax g(η) 

u =
∂ψ

∂y
  and  v = −

∂ψ

∂x
                                                            (6) 

 

are converted into non-dimensional governing 
equations. 

Apply transformations to Eqs. 1-5, Eq. 1, 
automatically will be identified, and the e Eqs. 2-5, 
are converted like as (Eqs. 7-10): 
 

(1 +
1

β
) fηηη + ffηη − fη

2 − Mfη − λfη +
(3n−3)

2
We fηη

2fηηη = 0                                                           (7) 

(1 + R)
1

Pr
gηη − 2fη g + fgη + Ec fηη

2 + 
1

Pr
(A∗fη + B∗g) =

0                                                                                               (8) 
 
the boundary conditions, become 
 
f(0) = 0, fη(0) = 1, g(0) = 1  at  η = 0                            (9) 
fη(∞) → 0,      g(∞) → 0,   at    η → ∞                                (10) 

R = (
4  σ∗ T0

3

α k∗
) , Pr =

cpμ

α
, Ec =

a2x2  

cp(Tw−T∞ )
,   

We =
Γ2  a3x2

υ
, M =

σB0
2  

ρ a
, λ =

v

Ka
, 

 

for physics and engineering interesting the skin-
friction coefficient, the Nusselt number, and the 
reduced Sherwood numbers are given as: 
 

Cfx = 2Rex

−
1

2 f ′′(0),   

Nux = −2 Rex

1

2  g′(0)  

 

where, Rex =
us x 

v
   is the local Renolds number and 

us = ax is stretching velocity. 

3. Numerical solution 

To solve and investigate interesting physical 
parameters and numbers, firstly we decomposed the 
original ODEs into a system of 1-order ordinary 
differential equals by letting (Eqs. 11 and 12):  

 
ω1 = f, ω2 = f ′ , ω3 = f ′′ , ω4 = g,ω5 = g′ 

 

which gives 
 

[
 
 
 
 
 
 
ω1′

ω2
′

 
ω3 ′
 

ω4 ′ 
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=

[
 
 
 
 
 
 

ω2

ω3
−ω1ω3+ω2
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1

β
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2
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                  (11) 

 

and the corresponding initial conditions are 
 

[
 
 
 
 
ω1

ω2
ω3

ω4

ω5]
 
 
 
 

=

[
 
 
 
 
0
1
φ1

1
φ2]

 
 
 
 

                                                                          (12) 

 
The dimensionless for velocity and temperature 

Eqs. 11 and 12 with the boundary conditions (13) 
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and (14) have been solved numerically by shooting 
method with fourth-order Runge-Kutta (RK4) 
integration scheme. 

To solve Eq. 15 with Eq. 16 with its initial value 
problem by shooting method with the help of 4-
order Runge-Kutta (RK4) integration technique, we 
need to find the unknown values for 𝜑1 and 𝜑2. The 
unknown initial values for 𝑓 ′′(0) and 𝑔′(0) are 
founded and the 4-order Runge–Kutta integration 
technique is used to catch the solution. The 
maximum magnitude of  𝜂 → ∞, to each interesting 
parameter is determined when the values of 
unknown boundary conditions at 𝜂 = 0 do not vary 
to a successful loop with absolute error smaller 
than 10−5 . 

4. Discussion and results 

An appropriate similarity transformation is used 
to reduce or transform the governing partial 
differential equations of Carreau-Casson fluids flow 
equation and heat problem into a system of non-
linear ordinary differential equations. The boundary 
layer problem is solved by using shooting method 
with help of RK-4 scheme, all figures are plotted for 
𝛽 = 0.01, 𝑀 = 1, 𝜆 = 1, 𝑃𝑟 = 1,𝑅 = 1,  𝐴∗ = 0.01,
𝐵∗ = 0.01,   𝐸𝑐 = 0.01, 𝑊𝑒 = 1 and 𝑛 = 2 on 𝑓 ′(𝜂) 
and g(𝜂). 

The behavior of Casson fluid Flow on velocity 
profile is examined in Fig. 1, for different value of the 
β parameter; from this figure it is obvious that 
Casson the parameter was a decrees coefficient on 
axial velocity. 

Figs. 2 and 3 demonstrate the influence of 
Weissenberg number 𝑊𝑒 and constant n on the 
velocity profile for different values for both of them, 
it is clear that both of them have different effect in 
comparisons with M, 𝜆 and Casson fluid β, which one 
could say 𝑊𝑒 and n are increase coefficient of 
boundary value problems. 

The influence of the Hartmann number M and the 
porosity parameter 𝜆 on the axial velocity are 
showed in Figs. 4 and 5 for different values of 
interesting parameters, it presented graphically that 
the value of boundary layer thickness decreases with 
increasing in magnitude parameter of both  𝑀 and  𝜆.  

In Figs, 6, 7, 8, 9, and 10, we analyze the physical 
parameter on heat transfer, Fig. 6 and Fig. 7 depicts 
the influence of the Prandtl number (Pr) and 𝐵∗  on 
the temperature profiles, it is clear that an increase 
in the values of Pr and temperature dependent heat 
source/sink B∗  contributes to the tinning of the 
thermal boundary layer. 

The effect of Eckert number (Ec), thermal 
radiation parameter R and space dependent heat 
source/ sink A∗ on the temperature profile are 
presented in Figs. 8, 9, and 10, increases the rate of 
physical parameters which causes the thermal 
boundary layer of fluid to increase.  

Local skin friction coefficient and local Nusselt 
number for various values of physical parameters 
which are discussed in this boundary layer problem 
with heat transfer are displayed in a Table 1. 

 
Fig. 1: Plotted for different value of  𝛽 on 𝑓′(𝜂) 

 

 
Fig. 2: Plotted for different value of  𝑊𝑒 on 𝑓 ′(𝜂) 

 

 
Fig. 3: Plotted for different value of  n  on f ′(η) 

 

 
Fig. 4: Plotted for different value of  𝑀  on 𝑓′(𝜂) 

5. Conclusion 

In this study, MHD boundary layer of Carreau-
Casson fluids under the effect of heat transfer is 
examined. The governing nonlinear ordinary 
differential equations are solved numerically by 



Hajar F. Ismael/ International Journal of Advanced and Applied Sciences, 4(7) 2017, Pages: 11-15 

14 
 

adopting shooting method. The impact of all the 
interesting physical parameters and numbers is 

illustrated with the help of figures. 

 
Table 1: Comparison for finding the value of 𝑓 ′′(0) and 𝑔′(0) using different magnitudes of parameter 
Number 𝜷 𝐌 𝛌 𝐏𝐫 𝐑 𝑨∗ 𝑩∗ 𝐄𝐜 𝐖𝐞 n −𝒇′′(𝟎) −𝒈′(𝟎) 

1 0.01 1 1 1 1 0.01 0.01 0.01 1 2 0.189993419391 1.0727097653768993 
2 0.1          0.517814489754 0.9867916601201487 
3 1          1.037055768657 0.8169969968913097 
4 ∞          1.20589290958 0.738962979656889 
5 0.01 1         0.1972172266419 1.0705081886486492 
6  2         0.2173924713642 1.0655490455520165 
7  3         0.23645455203 1.060823503358435 
8  4         0.2545347055335 1.0563063001739408 
9  1 1        0.1972172266419 1.0705081886486492 

10   2        0.2173924713642 1.0655490455520165 
11   3        0.236454552033 1.060823503358435 
12   4        0.2545347055335 1.0563063001739408 
13   1 1       0.1899934193913 1.0727097653768993 
14    2       0.1899934181811 1.5426454105977554 
15    3       0.1899934197456 1.9023968469896122 
16    4       0.1972172267519 2.203408538525036 
17    1 1      0.1972172266419 1.0705081886486492 
18     2      0.197217226644 0.8642952120733189 
19     3      0.1972172266538 0.7411901525460889 
20     4      0.1972172266332 0.6571358006148859 
21     1 0.01     0.1899934196074 1.0727097715266354 
22      0.1     0.189993419405 1.0276166767485204 
23      1     0.1899934196074 0.5766857887362731 
24      3     0.189993419607 0.4253828633661532 
25      0.01 0.01    0.1899934196074 1.0727097715266354 
26       1    0.1899934196074 0.7963240489558914 
27       2    0.18999341961 0.22878992403139686  
28       -1    0.197217226493 1.2897690886156585 
29       0.01 0.01   0.189993419391 1.0727097653768993 
30        2   0.1899934194188 1.0400558237474355 
31        5   0.18999341941 0.9908287777589022 
32        8   0.1899934194179 0.941601730068325 
33        0.01 1  0.1899934196074 1.0727097715266354 
34         2  0.189970952313 1.0727147485989246 
35         4  0.1899485059144 1.0727197217049194 
36         6  0.1899260803738 1.0727246908492336 
37         1 0 0.197265109168 1.0704975337056755 
38          2 0.1972172266419 1.0705081886486492 
39          4 0.1971694405504 1.0705188250873112 
40          6 0.1971217505198 1.0705294430865875 

 

 
Fig. 5: Plotted for different value of  𝑀  on 𝑓′(𝜂) 

 

 
Fig. 6: Plotted for different value of  Pr on g(η) 

 
Fig. 7: Plotted for different value of 𝐵∗   on 𝑔(𝜂) 

 

 
Fig. 8: Plotted for different value of  𝑅 on 𝑔(𝜂) 
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Fig. 9: Plotted for different value of  𝐴∗  on 𝑔(𝜂) 

 

Fig. 10: Plotted for different value of  𝐸𝑐 on 𝑔(𝜂) 
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